RERE deficiency contributes to the development of orofacial clefts in humans and mice

Author:

Kim Bum Jun1,Zaveri Hitisha P1,Kundert Peter N12,Jordan Valerie K3,Scott Tiana M4,Carmichael Jenny5,Scott Daryl A13

Affiliation:

1. Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA

2. Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA

3. Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA

4. Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA

5. LNR Genomic Medicine Service, Northampton General Hospital, Cliftonville, Northampton NN1 5BD, UK

Abstract

Abstract Deletions of chromosome 1p36 are the most common telomeric deletions in humans and are associated with an increased risk of orofacial clefting. Deletion/phenotype mapping, combined with data from human and mouse studies, suggests the existence of multiple 1p36 genes associated with orofacial clefting including SKI, PRDM16, PAX7 and GRHL3. The arginine–glutamic acid dipeptide (RE) repeats gene (RERE) is located in the proximal critical region for 1p36 deletion syndrome and encodes a nuclear receptor co-regulator. Pathogenic RERE variants have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye or heart (NEDBEH). Cleft lip has previously been described in one individual with NEDBEH. Here we report the first individual with NEDBEH to have a cleft palate. We confirm that RERE is broadly expressed in the palate during mouse embryonic development, and we demonstrate that the majority of RERE-deficient mouse embryos on C57BL/6 background have cleft palate. We go on to show that ablation of Rere in cranial neural crest (CNC) cells, mediated by a Wnt1-Cre, leads to delayed elevation of the palatal shelves and cleft palate and that proliferation of mesenchymal cells in the palatal shelves is significantly reduced in Rereflox/flox; Wnt1-Cre embryos. We conclude that loss of RERE function contributes to the development of orofacial clefts in individuals with proximal 1p36 deletions and NEDBEH and that RERE expression in CNC cells and their derivatives is required for normal palatal development.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3