Injectable reactive oxygen and nitrogen species-controlling hydrogels for tissue regeneration: current status and future perspectives

Author:

Le Thi Phuong1,Tran Dieu Linh1,Hoang Thi Thai Thanh2,Lee Yunki2,Park Ki Dong3

Affiliation:

1. Institute of Applied Materials Science, Vietnam Academy of Science and Technology , Ho Chi Minh City 700000, Vietnam

2. Department of Orthopaedics, Emory University School of Medicine , Atlanta, GA 30329, USA

3. Department of Molecular Science and Technology, Ajou University , Suwon 443-749, Republic of Korea

Abstract

Abstract The dual role of reactive oxygen and nitrogen species (RONS) in physiological and pathological processes in biological systems has been widely reported. It has been recently suggested that the regulation of RONS levels under physiological and pathological conditions is a potential therapy to promote health and treat diseases, respectively. Injectable hydrogels have been emerging as promising biomaterials for RONS-related biomedical applications owing to their excellent biocompatibility, three-dimensional and extracellular matrix-mimicking structures, tunable properties and easy functionalization. These hydrogels have been developed as advanced injectable platforms for locally generating or scavenging RONS, depending on the specific conditions of the target disease. In this review article, the design principles and mechanism by which RONS are generated/scavenged from hydrogels are outlined alongside a discussion of their in vitro and in vivo evaluations. Additionally, we highlight the advantages and recent developments of these injectable RONS-controlling hydrogels for regenerative medicines and tissue engineering applications.

Funder

Priority Research Centers Program

National Research Foundation of Korea

Korea government

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3