The interaction mechanism of nickel ions with L929 cells based on integrative analysis of proteomics and metabolomics data

Author:

Zhang Yajing1,Huang Yan1,Chen Rong1,Chen Shulin1,Lü Xiaoying1ORCID

Affiliation:

1. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2# Si Pailou , Nanjing 210096, China

Abstract

Abstract The aim of this article was to study the toxicity mechanism of nickel ions (Ni2+) on L929 cells by combining proteomics and metabolomics. First, iTRAQ-based proteomics and LC/MS metabolomics analyses were used to determine the protein and metabolite expression profiles in L929 cells after treatment with 100 μM Ni2+ for 12, 24 and 48 h. A total of 177, 2191 and 2109 proteins and 40, 60 and 74 metabolites were found to be differentially expressed. Then, the metabolic pathways in which both differentially expressed proteins and metabolites were involved were identified, and three pathways with proteins and metabolites showing upstream and downstream relationships were affected at all three time points. Furthermore, the protein–metabolite–metabolic pathway network was constructed, and two important metabolic pathways involving 4 metabolites and 17 proteins were identified. Finally, the functions of the important screened metabolic pathways, metabolites and proteins were investigated and experimentally verified. Ni2+ mainly affected the expression of upstream proteins in the glutathione metabolic pathway and the arginine and proline metabolic pathway, which further regulated the synthesis of downstream metabolites, reduced the antioxidant capacity of cells, increased the level of superoxide anions and the ratio of GSSG to GSH, led to oxidative stress, affected energy metabolism and induced apoptosis.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3