Functionalized TiCu/TiCuN coating promotes osteoporotic fracture healing by upregulating the Wnt/β-catenin pathway

Author:

Tan Jia12,Ren Ling3ORCID,Xie Kai12,Wang Lei12,Jiang Wenbo2,Guo Yu4,Hao Yongqiang12

Affiliation:

1. Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, China

2. Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, China

3. Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110000, China

4. Musculoskeletal Tumor Center, Peking University People’s Hospital , Beijing 100044, China

Abstract

Abstract Osteoporosis results in decreased bone mass and insufficient osteogenic function. Existing titanium alloy implants have insufficient osteoinductivity and delayed/incomplete fracture union can occur when used to treat osteoporotic fractures. Copper ions have good osteogenic activity, but their dose-dependent cytotoxicity limits their clinical use for bone implants. In this study, titanium alloy implants functionalized with a TiCu/TiCuN coating by arc ion plating achieved a controlled release of copper ions in vitro for 28 days. The coated alloy was co-cultured with bone marrow mesenchymal stem cells and showed excellent biocompatibility and osteoinductivity in vitro. A further exploration of the underlying mechanism by quantitative real-time polymerase chain reaction and western blotting revealed that the enhancement effects are related to the upregulation of genes and proteins (such as axin2, β-catenin, GSK-3β, p-GSK-3β, LEF1 and TCF1/TCF7) involved in the Wnt/β-catenin pathway. In vivo experiments showed that the TiCu/TiCuN coating significantly promoted osteoporotic fracture healing in a rat femur fracture model, and has good in vivo biocompatibility based on various staining results. Our study confirmed that TiCu/TiCuN-coated Ti promotes osteoporotic fracture healing associated with the Wnt pathway. Because the coating effectively accelerates the healing of osteoporotic fractures and improves bone quality, it has significant clinical application prospects.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Shanghai Municipal Key Clinical Specialty

Huangpu District Industrial Support Fund

National Facility for Translational Medicine

Shanghai Engineering Research Center of Orthopedic Innovative Instruments and Personalized Medicine Instruments and Personalized Medicine

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3