Recent advances of natural and bioengineered extracellular vesicles and their application in vascular regeneration

Author:

Xu Jianxiong1,Wang Jinxuan1,Chen Yidan1,Hou Yuanfang1,Hu Jianjun2,Wang Guixue1

Affiliation:

1. Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University , Chongqing 400030, China

2. Department of Pathology, Guizhou Provincial People’s Hospital , Guiyang 550002, China

Abstract

Abstract The progression of cardiovascular diseases such as atherosclerosis and myocardial infarction leads to serious vascular injury, highlighting the urgent need for targeted regenerative therapy. Extracellular vesicles (EVs) composed of a lipid bilayer containing nuclear and cytosolic materials are relevant to the progression of cardiovascular diseases. Moreover, EVs can deliver bioactive cargo in pathological cardiovascular and regulate the biological function of recipient cells, such as inflammation, proliferation, angiogenesis and polarization. However, because the targeting and bioactivity of natural EVs are subject to several limitations, bioengineered EVs have achieved wide advancements in biomedicine. Bioengineered EVs involve three main ways to acquire including (i) modification of the EVs after isolation; (ii) modification of producer cells before EVs’ isolation; (iii) synthesize EVs using natural or modified cell membranes, and encapsulating drugs or bioactive molecules into EVs. In this review, we first summarize the cardiovascular injury-related disease and describe the role of different cells and EVs in vascular regeneration. We also discuss the application of bioengineered EVs from different producer cells to cardiovascular diseases. Finally, we summarize the surface modification on EVs which can specifically target abnormal cells in injured vascular.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3