Application of osteoinductive calcium phosphate ceramics in giant cell tumor of the sacrum: report of six cases

Author:

Wang Yitian12,Li Xiangfeng3,Luo Yi12,Zhang Li4,Chen Hezhong34,Min Li12,Chang Qing2,Zhou Yong12,Tu Chongqi12,Zhu Xiangdong3,Zhang Xingdong3

Affiliation:

1. Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China

2. Bone and Joint 3D-Printing & Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu 610041, Sichuan, China

3. National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China

4. Sichuan Baiameng Bioactive Materials Limited Liability Company, No. 37 Guoxuexiang, Chengdu 610041, Sichuan, China

Abstract

Abstract This study aimed at evaluating the possibility and effectiveness of osteoinductive bioceramics to fill the tumor cavity following the curettage of sacral giant cell tumor (GCT). Six patients (four females and two males, 25–45 years old) underwent nerve-sparing surgery, in which the tumor was treated by denosumab, preoperative arterial embolization and extensive curettage. The remaining cavity was filled with commercial osteoinductive calcium phosphate (CaP) bioceramics, whose excellent osteoinductivity was confirmed by intramuscular implantation in beagle canine. All patients were followed by computed tomography (CT) scans postoperatively. According to the modified Neer criterion, five cases obtained Type I healing status, and one case had Type II. At the latest follow-up, no graft-related complications and local recurrence were found. The CT scan indicated a median time of healing initiation of 3 months postoperatively, and the median time for relatively complete healing was 12 months. The excellent bone regenerative ability of the ceramics was also confirmed by increased CT attenuation value, blurred boundary and cortical rim rebuilding. In conclusion, osteoinductive CaP bioceramics could be an ideal biomaterial to treat the large remaining cavity following extensive curettage of sacral GCT. However, further investigation with more cases and longer follow-up was required to confirm the final clinical effect.

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3