The qualitative accuracy of clinical dermatophytes via matrix-assisted laser desorption ionization-time of flight mass spectrometry: A meta-analysis

Author:

Chen Jin1ORCID,Zheng Feng2,Sun Xihuan3,Gao Hongzhi1,Lin Shu45,Zeng Yiming6

Affiliation:

1. Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000 China

2. Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000 China

3. Clinical Microbiology Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000 China

4. Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000 China

5. Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia

6. Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000 China

Abstract

Abstract Dermatophytes are an important part of superficial fungal infections, and accurate diagnosis is paramount for successful treatment. Recently, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool to identify clinical pathogens; its advantages are cost-effectiveness, rapid detection, and high accuracy. However, as the accurate identification of clinical dermatophytes via MALDI-TOF MS has still not been fully evaluated, we performed a meta-analysis for its systematic evaluation. Fifteen eligible studies were involved and showed high accuracy with an identification ratio of 0.96 (95% CI = 0.92─1.01) and 0.91 (95% CI = 0.86─0.96) at the genus and species levels, respectively. The results showed higher accuracy ratio of Vitek MS (91%) than MALDI Biotyper (85%). Dermatophytes such as Trichophyton interdigitale (0.99, 95% CI = 0.97─1.02), T. mentagrophytes var interdigitale (1.00, 95% CI = 0.98─1.02), and Microsporum canis (0.97, 95% CI = 0.89─1.04) showed high accuracy in detected clinical dermatophytes. Moreover, a library with self-built database set up by laboratories showed higher accuracy than commercial database, and 15-day cultivation for dermatophytes showed highest accuracy considering culture time. High heterogeneity was observed and decreased only with the subgroup analysis of species. The subgroup analysis of mass spectrometry, library database, and culture time also exhibited high heterogeneity. In summary, our results showed that MALDI-TOF MS could be used for highly accurate detection of clinically pathogenic dermatophytes, which could be an alternative diagnostic method in addition to morphological and molecular methods.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Second Affiliated Hospital of Fujian Medical University

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3