Phytolectin nanoconjugates in combination with standard antifungals curb multi-species biofilms and virulence of vulvovaginal candidiasis (VVC) causing Candida albicans and non-albicans Candida

Author:

Senthilganesh Jayasankari1,Kuppusamy Shruthi1,Durairajan Rubini1,Subramaniyan Siva Bala2,Veerappan Anbazhagan2,Paramasivam Nithyanand1ORCID

Affiliation:

1. Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India

2. Chemical Biology laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India

Abstract

Abstract Vulvovaginal candidiasis (VVC) is a commonly occurring yeast infection caused by Candida species in women. Among Candida species, C. albicans is the predominant member that causes vaginal candidiasis followed by Candida glabrata. Biofilm formation by Candida albicans on the vaginal mucosal tissue leads to VVC infection and is one of the factors for a commensal organism to get into virulent form leading to disease. In addition to that, morphological switching from yeast to hyphal form increases the risk of pathogenesis as it aids in tissue invasion. In this study, jacalin, a phytolectin complexed copper sulfide nanoparticles (NPs) have been explored to eradicate the mono and mixed species biofilms formed by fluconazole-resistant C. albicans and C. glabrata isolated from VVC patients. NPs along with standard antifungals like micafungin and amphotericin B have been evaluated to explore interaction behavior and we observed synergistic interactions between them. Microscopic techniques like light microscopy, phase contrast microscopy, scanning electron microscopy, confocal laser scanning microscopy were used to visualize the inhibition of biofilm by NPs and in synergistic combinations with standard antifungals. Real-time PCR analysis was carried out to study the expression pattern of the highly virulent genes which are responsible for yeast to hyphal switch, drug resistance and biofilm formation upon treatment with NPs in combination with standard antifungals. The current study shows that lectin-conjugated NPs with standard antifungals might be a different means to disrupt the mixed species population of Candida spp. that causes VVC. Lay Summary The present study focuses on exploiting the high biding affinity between the cell surface glycans present in Candida cells and the plant lectin, Jacalin. Jacalin serves as a ‘Trojan Horse’ wherein the lectin-coupled nanoparticles show a high efficacy when compared with the unconjugated nanoparticles. The present approach also improves the anti-biofilm activity of the antifungal drugs against drug-resistant Candida strains.

Funder

Indian Council of Medical Research

Department of Biotechnology, Government of West Bengal

Ministry of science and Technology, New Delhi

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3