Vancomycin enhances growth and virulence of Trichosporon spp. planktonic cells and biofilms

Author:

de Aguiar Cordeiro Rossana1,da Silva Bruno Nascimento1,de Aguiar Ana Luiza Ribeiro1,Pereira Livia Maria Galdino1,Portela Fernando Victor Monteiro1,da Rocha Maria Gleiciane2,Pergentino Mariana Lara Mendes1,de Santos Sales Gyrliane1,de Sousa José Kleybson1,de Camargo Zoilo Pires3,Brilhante Raimunda Sâmia Nogueira1,Rocha Marcos Fábio Gadelha12,Castelo-Branco Débora de Souza Collares Maia1,Sidrim José Júlio Costa1

Affiliation:

1. Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil

2. Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará. Av. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714–903, Fortaleza, Ceará, Brazil

3. Federal University of São Paulo (UNIFESP), Department of Medicine, Discipline of Infectious Diseases, São Paulo-SP, CEP: 04023-062, Brazil

Abstract

Abstract Invasive fungal infections (IFIs) are important worldwide health problem, affecting the growing population of immunocompromised patients. Although the majority of IFIs are caused by Candida spp., other fungal species have been increasingly recognized as relevant opportunistic pathogens. Trichosporon spp. are members of skin and gut human microbiota. Since 1980’s, invasive trichosporonosis has been considered a significant cause of fungemia in patients with hematological malignancies. As prolonged antibiotic therapy is an important risk factor for IFIs, the present study investigated if vancomycin enhances growth and virulence of Trichosporon. Vancomycin was tested against T. inkin (n = 6) and T. asahii (n = 6) clinical strains. Planktonic cells were evaluated for their metabolic activity and virulence against Caenorhabditis elegans. Biofilms were evaluated for metabolic activity, biomass production, amphotericin B tolerance, induction of persister cells, and ultrastructure. Vancomycin stimulated planktonic growth of Trichosporon spp., increased tolerance to AMB, and potentiates virulence against C. elegans. Vancomycin stimulated growth (metabolic activity and biomass) of Trichosporon spp. biofilms during all stages of development. The antibiotic increased the number of persister cells inside Trichosporon biofilms. These cells showed higher tolerance to AMB than persister cells from VAN-free biofilms. Microscopic analysis showed that VAN increased production of extracellular matrix and cells in T. inkin and T. asahii biofilms. These results suggest that antibiotic exposure may have a direct impact on the pathophysiology of opportunistic trichosporonosis in patients at risk. Lay abstract This study showed that the vancomycin stimulated Trichosporon growth, induced morphological and physiological changes on their biofilms, and also enhanced their in vivo virulence. Although speculative, the stimulatory effect of vancomycin on fungal cells should be considered in a clinical scenario.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3