Cholesterol metabolic enzyme Ggpps regulates epicardium development and ventricular wall architecture integrity in mice

Author:

Zheng Feng1,Chen Zhong1,Tang Qiao-Li1,Wang Xin-Ying1,Chong Dan-Yang1,Zhang Tong-Yu1,Gu Ya-Yun2,Hu Zhi-Bin2,Li Chao-Jun12

Affiliation:

1. Model Animal Research Centre, National Resource Centre for Mutant Mice, Medical School of Nanjing University, Nanjing 210093, China

2. State Key Laboratory of Reproductive Medicine, Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211100, China

Abstract

Abstract During embryonic heart development, the progenitor cells in the epicardium would migrate and differentiate into noncardiomyocytes in myocardium and affect the integrity of ventricular wall, but the underlying mechanism has not been well studied. We have found that myocardium geranylgeranyl diphosphate synthase (Ggpps), a metabolic enzyme for cholesterol biosynthesis, is critical for cardiac cytoarchitecture remodelling during heart development. Here, we further reveal that epicardial Ggpps could also regulate ventricular wall architecture integrity. Epicardium-specific deletion of Ggpps before embryonic day 10.5 (E10.5) is embryonic lethal, whereas after E13.5 is survival but with defects in the epicardium and ventricular wall structure. Ggpps deficiency in the epicardium enhances the proliferation of epicardial cells and disrupts cell‒cell contact, which makes epicardial cells easier to invade into ventricular wall. Thus, the fibroblast proliferation and coronary formation in myocardium were found enhanced that might disturb the coronary vasculature remodelling and ventricular wall integrity. These processes might be associated with the activation of YAP signalling, whose nuclear distribution is blocked by Ggpps deletion. In conclusion, our findings reveal a potential link between the cholesterol metabolism and heart epicardium and myocardium development in mammals, which might provide a new view of the cause for congenital heart diseases and potential therapeutic target in pathological cardiac conditions.

Funder

Key R&D Program of Jiangsu Province

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Genetics,Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3