Organization of microtubule plus-end dynamics by phase separation in mitosis

Author:

Yang Fengrui123,Ding Mingrui1,Song Xiaoyu123,Chen Fang4,Yang Tongtong12,Wang Chunyue12,Hu Chengcheng12,Hu Qing12,Yao Yihan1,Du Shihao12ORCID,Yao Phil Y23,Xia Peng12,Adams Jr Gregory23,Fu Chuanhai123,Xiang Shengqi1,Liu Dan1,Wang Zhikai123,Yuan Kai4ORCID,Liu Xing12ORCID

Affiliation:

1. MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China , Hefei 230027 , China

2. Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China , Hefei 230027 , China

3. Keck Center for Organoids Plasticity, Morehouse School of Medicine , Atlanta, GA 30310 , USA

4. Hunan Key Laboratory of Molecular Precision Medicine, Central South University , Changsha 410083 , China

Abstract

abstract In eukaryotes, microtubule polymers are essential for cellular plasticity and fate decisions. End-binding (EB) proteins serve as scaffolds for orchestrating microtubule polymer dynamics and are essential for cellular dynamics and chromosome segregation in mitosis. Here, we show that EB1 forms molecular condensates with TIP150 and MCAK through liquid–liquid phase separation to compartmentalize the kinetochore–microtubule plus-end machinery, ensuring accurate kinetochore–microtubule interactions during chromosome segregation in mitosis. Perturbation of EB1–TIP150 polymer formation by a competing peptide prevents phase separation of the EB1-mediated complex and chromosome alignment at the metaphase equator in both cultured cells and Drosophila embryos. Lys220 of EB1 is dynamically acetylated by p300/CBP-associated factor in early mitosis, and persistent acetylation at Lys220 attenuates phase separation of the EB1-mediated complex, dissolves droplets in vitro, and harnesses accurate chromosome segregation. Our data suggest a novel framework for understanding the organization and regulation of eukaryotic spindle for accurate chromosome segregation in mitosis.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3