Inner nuclear membrane protein TMEM201 maintains endothelial cell migration and angiogenesis by interacting with the LINC complex

Author:

Zhang Yutian12,Kong Ya12,Guo Haoran12,Liu Yun3,Zang Yi124,Li Jia12345

Affiliation:

1. University of Chinese Academy of Sciences , Beijing 100049, China

2. State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China

3. State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing 210009, China

4. School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences , Hangzhou 310024, China

5. Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266237, China

Abstract

Abstract The nuclear envelope comprises the outer nuclear membrane, inner nuclear membrane (INM), and nucleopore. Although ∼60 INM proteins have been identified, only a few of them have been well characterized, revealing their crucial roles. Our group focused on the INM protein transmembrane protein 201 (TMEM201), whose role in cellular function remains to be defined. In this study, we investigated the role of TMEM201 in endothelial cell migration and angiogenesis. Depletion of TMEM201 expression by short hairpin RNA-mediated interference impeded human umbilical vein endothelial cell (HUVEC) angiogenic behavior in tube formation and fibrin gel bead sprouting assays. Meanwhile, TMEM201-deficient HUVECs exhibited impaired migration ability. We next explored the underlying mechanism and found that the N-terminal of TMEM201 interacted with the linker of nucleoskeleton and cytoskeleton complex and was required for regulating endothelial cell migration and angiogenesis. These in vitro findings were further confirmed by using in vivo models. In Tmem201-knockout mice, retinal vessel development was arrested and aortic ring sprouting was defective. In addition, loss of tmem201 impaired zebrafish intersegmental vessel development. In summary, TMEM201 was shown to regulate endothelial cell migration and control the process of angiogenesis. This study is the first to reveal the role of INM proteins in the vascular system and angiogenesis.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3