Estrogen receptor α-mediated signaling inhibits type I interferon response to promote breast cancer

Author:

Cao Li-Bo1,Ruan Zi-Lun1ORCID,Yang Yu-Lin1,Zhang Nian-Chao1,Gao Chuan1,Cai Cheguo1,Zhang Jing1ORCID,Hu Ming-Ming1,Shu Hong-Bing1

Affiliation:

1. Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences ; Wuhan 430072 , China

Abstract

Abstract Estrogen receptor α (ERα) is an important driver and therapeutic target in approximately 70% of breast cancers. How ERα drives breast carcinogenesis is not fully understood. In this study, we show that ERα is a negative regulator of type I interferon (IFN) response, which is critical for breast carcinogenesis. Activation of ERα by its natural ligand estradiol inhibits IFN-β-induced transcription of downstream IFN-stimulated genes (ISGs), whereas deficiency of ERα or stimulation with its antagonist fulvestrant has opposite effects. Mechanistically, ERα inhibits type I IFN response by two distinct mechanisms. ERα induces expression of the histone 2A variant H2A.Z, which restricts engagement of the IFN-stimulated gene factor 3 (ISGF3) complex at the ISG promoters. ERα also interacts with STAT2, which leads to disruption of the ISGF3 complex. These two events mutually lead to transcriptional inhibition of ISGs induced by type I IFNs. In a xenograft mouse tumor model, fulvestrant enhances the ability of IFN-β to suppress ERα+ breast tumor growth. Consistently, clinical data suggests that ERα+ breast cancer patients with higher levels of ISGs exhibit an increased survival rate. Our findings suggest that ERα inhibits type I IFN response via two distinct mechanisms to promote breast cancer.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Genetics,Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3