scRNA-seq profiling of neonatal and adult thymus-derived CD4+ T cells by a T cell origin-time tracing model

Author:

Han Yuheng1,Ouyang Xinxing12,Chen Yao1,Lai Shujing1,Sun Hongxiang1,Wu Ningbo1,Ruan Chun1,Lu Limin1,Su Bing1345

Affiliation:

1. Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China

2. Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200030 , China

3. Center for Human Translational Immunology at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China

4. Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China

5. Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University , Changsha 410008 , China

Abstract

ABSTRACT It is well documented that the neonatal thymus-derived (neonatal-TD) regulatory T cells (Treg) are essential to prevent lethal autoimmune diseases and allergies, and neonatal and adult thymus possesses distinct output potentials for naïve T cells, including Treg. However, the molecular features and detailed functional differences between neonatal-TD and adult thymus-derived (adult-TD) T cells in terms of their ability to maintain immune homeostasis during long-term environmental influences are still largely unknown, partially due to the lack of appropriate animal models to precisely trace these cells at specific time points. In this study, neonatal-TD and adult-TD CD4+ T cells from the spleen and Peyer's patches were traced for 9 weeks by a T cell origin-time tracing mouse model and analysed by single-cell RNA sequencing. More Treg but fewer naïve T cells were found in neonatal-TD CD4+ T cells from both tissues than those from adult-TD counterparts. Interestingly, the neonatal-TD Treg in both the spleen and Peyer's patches exhibited augmented expression of Foxp3, Gata3, Ctla4, Icos, Il2ra, Tgfb1, and Nrp1, as well as enriched Gene Ontology terms like T cell activation and tolerance induction, indicating an enhanced immunosuppressive function. These results were further confirmed by flow cytometry analysis and in vitro immune suppression assays. Flow cytometry also revealed a significantly higher proportion of neonatal-TD Treg in total Treg than that of adult-TD counterparts, suggesting the longer lifespan of neonatal-TD Treg. To investigate the intrinsic features of neonatal-TD and adult-TD CD4+ T cells, a shortened tracing time was performed. Surprisingly, the neonatal-TD and adult-TD CD4+ T cells had similar proportions of Treg and did not exhibit significant differences in Foxp3, Gata3, Ctla4, Icos, Il2ra, and Tgfb1 expression levels after tracing for 12 days. On the other hand, neonatal-TD Treg present an increased Nrp1 expression level compared with adult-TD counterparts, indicating the enhanced stability. Together, our work reveals that the neonatal-TD Treg are more immunosuppressive, which is likely shaped primarily by environmental factors.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Shanghai Science and Technology Commission

Shanghai Municipal Commission of Health

Scientific Research Program of Traditional Chinese Medicine

Nurture Projects for Basic Research of Shanghai Chest Hospital

China Postdoctoral Science Foundation

National Postdoctoral Program for Innovative Talent

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Genetics,Molecular Biology,General Medicine

Reference75 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3