Modeling endodermal organ development and diseases using human pluripotent stem cell-derived organoids

Author:

Pan Fong Cheng1,Evans Todd1,Chen Shuibing1

Affiliation:

1. Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA

Abstract

AbstractRecent advances in development of protocols for directed differentiation from human pluripotent stem cells (hPSCs) to defined lineages, in combination with 3D organoid technology, have facilitated the generation of various endoderm-derived organoids for in vitro modeling of human gastrointestinal development and associated diseases. In this review, we discuss current state-of-the-art strategies for generating hPSC-derived endodermal organoids including stomach, liver, pancreatic, small intestine, and colonic organoids. We also review the advantages of using this system to model various human diseases and evaluate the shortcomings of this technology. Finally, we emphasize how other technologies, such as genome editing and bioengineering, can be incorporated into the 3D hPSC-organoid models to generate even more robust and powerful platforms for understanding human organ development and disease modeling.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3