Histone lactylation driven by mROS-mediated glycolytic shift promotes hypoxic pulmonary hypertension

Author:

Chen Jian1,Zhang Meiling2,Liu Yanjie3,Zhao Shihong1,Wang Yanxia4,Wang Meng2,Niu Wen5,Jin Faguang1,Li Zhichao1

Affiliation:

1. Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University , Xi'an 710038 , China

2. College of Life Science and Medicine, Northwest University , Xi'an 710069 , China

3. Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University , Xi'an 710061 , China

4. Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University , Xi'an 710032 , China

5. Department of pathophysiology, School of Basic Medicine, Fourth Military Medical University , Xi'an 710032 , China

Abstract

Abstract Increased mitochondrial reactive oxygen species (mROS) and glycolysis have been established in pulmonary hypertension (PH). However, the effect of elevated mROS on glycolytic shift along with how increased glycolysis promotes hypoxic pulmonary artery smooth muscle cells (PASMCs) proliferation and vascular remodeling remain elusive. Here, we reported that hypoxia-induced mROS inhibit HIF-1α hydroxylation and further trigger PASMCs glycolytic switch through the upregulated HIF-1α/PDK1&2/p-PDH-E1α axis, which facilitates lactate accumulation and histone lactylation. Through H3K18la and HIF-1α ChIP-seq analysis, we found that the enhanced histone lactylation of HIF-1α targets, such as Bmp5, Trpc5, and Kit, promotes PASMCs proliferation. Knockdown of Pdk1&2 blunts lactate production, histone lactylation marks, and PASMCs proliferation. Moreover, pharmacological intervention with lactate dehydrogenase inhibitor diminishes histone lactylation and ameliorates PASMCs proliferation and vascular remodeling in hypoxic PH rats. Taken together, this study provides proof of concept for anti-remodeling therapy through lactate manipulation.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Genetics,Molecular Biology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3