The Impoverished Publicness of Algorithmic Decision Making

Author:

Frost Neli

Abstract

Abstract The increasing use of machine learning (ML) in public administration requires that we think carefully about the political and legal constraints imposed on public decision making. These developments confront us with the following interrelated questions: can algorithmic public decisions be truly ‘public’? And, to what extent does the use of ML models compromise the ‘publicness’ of such decisions? This article is part of a broader inquiry into the myriad ways in which digital and AI technologies transform the fabric of our democratic existence by mutating the ‘public’. Focusing on the site of public administration, the article develops a conception of publicness that is grounded in a view of public administrations as communities of practice. These communities operate through dialogical, critical and synergetic interactions that allow them to track—as faithfully as possible—the public’s heterogeneous view of its interests, and reify these interests in decision making. Building on this theorisation, the article suggests that the use of ML models in public decision making inevitably generates an impoverished publicness, and thus undermines the potential of public administrations to operate as a locus of democratic construction. The article thus advocates for a reconsideration of the ways in which administrative law problematises and addresses the harms of algorithmic decision making.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3