SR-A neutralizing antibody: potential drug candidate for ameliorating osteoclastogenesis in rheumatoid arthritis

Author:

Xie Yang1ORCID,Jiang Xiang12,Wang Ping1,Zheng Xi12,Song Jing12,Bai Mingxin1ORCID,Tang Yundi1,Fang Xiangyu1,Jia Yuan1,Li Zhanguo123,Hu Fanlei134

Affiliation:

1. Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China

2. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China

3. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China

4. Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China

Abstract

Abstract Rheumatoid arthritis (RA) is an autoimmune disease characterized by proliferative synovitis with deterioration of cartilage and bone. Osteoclasts (OCs) are the active participants in the bone destruction of RA. Although with great advances, most current therapeutic strategies for RA have limited effects on bone destruction. Macrophage scavenger receptor A (SR-A) is a class of pattern recognition receptors (PRRs) involved in bone metabolism and OC differentiation. More recently, our study revealed the critical role of SR-A in RA diagnosis and pathogenesis. Here, we further demonstrated that serum SR-A levels were positively correlated with bone destruction in patients with RA. Anti-SR-A neutralizing antibodies significantly inhibited OC differentiation and bone absorption in vitro in patients with RA, but not in healthy individuals, dampening the expression of OC-specific genes such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), and matrix metalloproteinase-9 (MMP-9). Similar results were also seen in collagen-induced arthritis (CIA) mice in vitro. Moreover, the anti-SR-A neutralizing antibody could further ameliorate osteoclastogenesis in vivo and ex vivo in CIA mice, accompanied by decreased serum levels of C-terminal telopeptide and IL-6, exhibiting potential protective effects. These results suggest that blockade of SR-A using anti-SR-A neutralizing antibodies might provide a promising therapeutic strategy for bone destruction in the RA.

Funder

National Natural Science Foundation of China

Beijing Nova Program

Central Universities: Peking University Clinical Medicine Plus X-Young Scholars Project

Peking University People’s Hospital

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3