Affiliation:
1. Departament de Matemàtiques, Universitat Politècnica de Catalunya
2. Departament de Matemàtiques, Universitat Autònoma de Barcelona
3. Department of Mathematics, University of Leicester
Abstract
Abstract
We show that Schmitt’s restriction species (such as graphs, matroids, posets, etc.) naturally induce decomposition spaces (a.k.a. unital $2$-Segal spaces), and that their associated coalgebras are an instance of the general construction of incidence coalgebras of decomposition spaces. We introduce directed restriction species that subsume Schmitt’s restriction species and also induce decomposition spaces. Whereas ordinary restriction species are presheaves on the category of finite sets and injections, directed restriction species are presheaves on the category of finite posets and convex maps. We also introduce the notion of monoidal (directed) restriction species, which induce monoidal decomposition spaces and hence bialgebras, most often Hopf algebras. Examples of this notion include rooted forests, directed graphs, posets, double posets, and many related structures. A prominent instance of a resulting incidence bialgebra is the Butcher–Connes–Kreimer Hopf algebra of rooted trees. Both ordinary and directed restriction species are shown to be examples of a construction of decomposition spaces from certain cocartesian fibrations over the category of finite ordinals that are also cartesian over convex maps. The proofs rely on some beautiful simplicial combinatorics, where the notion of convexity plays a key role. The methods developed are of independent interest as techniques for constructing decomposition spaces.
Funder
Australian Education International, Australian Government
Federación Española de Enfermedades Raras
Publisher
Oxford University Press (OUP)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献