Upper Tail Large Deviations for Arithmetic Progressions in a Random Set

Author:

Bhattacharya Bhaswar B1,Ganguly Shirshendu2,Shao Xuancheng3,Zhao Yufei4

Affiliation:

1. Department of Statistics University of Pennsylvania, Philadelphia, PA, USA

2. Department of Statistics, University of California, Berkeley, California, CA, USA

3. Department of Mathematics, University of Kentucky, Lexington, KY, USA

4. Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

Abstract Let Xk denote the number of k-term arithmetic progressions in a random subset of $\mathbb{Z}/N\mathbb{Z}$ or $\{1, \dots , N\}$ where every element is included independently with probability p. We determine the asymptotics of $\log \mathbb{P}\big (X_{k} \ge \big (1+\delta \big ) \mathbb{E} X_{k}\big )$ (also known as the large deviation rate) where p → 0 with $p \ge N^{-c_{k}}$ for some constant ck > 0, which answers a question of Chatterjee and Dembo. The proofs rely on the recent nonlinear large deviation principle of Eldan, which improved on earlier results of Chatterjee and Dembo. Our results complement those of Warnke, who used completely different methods to estimate, for the full range of p, the large deviation rate up to a constant factor.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference32 articles.

1. The difference between consecutive primes. II;Baker;Proc. London Math. Soc.,2001

2. Upper tails and independence polynomials in random graphs;Bhattacharya;Adv. Math.,2017

3. Rectification principles in additive number theory;Bilu,1998

4. Concentration Inequalities

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deviation probabilities for arithmetic progressions and irregular discrete structures;Electronic Journal of Probability;2023-01-01

2. Upper tails via high moments and entropic stability;Duke Mathematical Journal;2022-07-15

3. Local limit theorems for subgraph counts;Journal of the London Mathematical Society;2022-02-23

4. The Maximal Number of 3-Term Arithmetic Progressions in Finite Sets in Different Geometries;Discrete & Computational Geometry;2022-02-04

5. Deviation probabilities for arithmetic progressions and other regular discrete structures;Random Structures & Algorithms;2021-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3