On the Hausdorff Dimension of Bernoulli Convolutions

Author:

Akiyama Shigeki1,Feng De-Jun2,Kempton Tom3,Persson Tomas4

Affiliation:

1. Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki, Japan

2. Department of Mathematics, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong

3. School of Mathematics, The University of Manchester, Manchester, UK

4. Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

Abstract We give an expression for the Garsia entropy of Bernoulli convolutions in terms of products of matrices. This gives an explicit rate of convergence of the Garsia entropy and shows that one can calculate the Hausdorff dimension of the Bernoulli convolution $\nu _{\beta }$ to arbitrary given accuracy whenever $\beta $ is algebraic. In particular, if the Garsia entropy $H(\beta )$ is not equal to $\log (\beta )$ then we have a finite time algorithm to determine whether or not $\operatorname{dim_H} (\nu _{\beta })=1$.

Funder

Japan Society for the Promotion of Science

Hong Kong Research Grants Council General Research Fund

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference26 articles.

1. Discrete spectra and Pisot numbers;Akiyama;J. Number Theory,2013

2. Characterisation of the numbers which satisfy the height reducing property;Akiyama;Indag. Math. (N.S.),2015

3. The entropy of a certain infinitely convolved Bernoulli measure;Alexander;J. London Math. Soc. (2),1991

4. “On the dimension of Bernoulli convolutions.”;Breuillard,2016

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3