Sharp Isoperimetric Inequalities for Small Volumes in Complete Noncompact Riemannian Manifolds of Bounded Geometry Involving the Scalar Curvature

Author:

Nardulli Stefano1,Osorio Acevedo Luis Eduardo2

Affiliation:

1. Centro de Matemática, Computação e Cognição - Universidade Federal do ABC, Avenida dos Estados, CEP, Santo André, SP, Brasil

2. Instituto de Matemática e Estatística - Universidade de São Paulo-Brazil, Rua do Matão, CEP, São Paulo, SP, Brasil

Abstract

Abstract We provide an isoperimetric comparison theorem for small volumes in an $n$-dimensional Riemannian manifold $(M^n,g)$ with $C^3$ bounded geometry in a suitable sense involving the scalar curvature function. Under $C^3$ bounds of the geometry, if the supremum of scalar curvature function $S_g<n(n-1)k_0$ for some $k_0\in \mathbb{R}$, then for small volumes the isoperimetric profile of $(M^n,g)$ is less then or equal to the isoperimetric profile of the complete simply connected space form of constant sectional curvature $k_0$. This work generalizes Theorem $2$ of [12] in which the same result was proved in the case where $(M^n, g)$ is assumed to be compact. As a consequence of our result we give an asymptotic expansion in Puiseux series up to the 2nd nontrivial term of the isoperimetric profile function for small volumes, generalizing our earlier asymptotic expansion [29]. Finally, as a corollary of our isoperimetric comparison result, it is shown that for small volumes the Aubin–Cartan–Hadamard’s conjecture is true in any dimension $n$ in the special case of manifolds with $C^3$ bounded geometry, and $S_g<n(n-1)k_0$. Two different intrinsic proofs of the fact that an isoperimetric region of small volume is of small diameter. The 1st under the assumption of mild bounded geometry, that is, positive injectivity radius and Ricci curvature bounded below. The 2nd assuming the existence of an upper bound of the sectional curvature, positive injectivity radius, and a lower bound of the Ricci curvature.

Funder

National Council for Scientific and Technological Development

São Paulo Research Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference40 articles.

1. On the first variation of a varifold;Allard;Ann. of Math. (2),1972

2. Problèmes isopérimétriques et espaces de Sobolev;Aubin;J. Differential Geom.,1976

3. Sobolev and isoperimetric inequalities for submanifolds in weighted ambient spaces;Batista;Ann. Mat. Pura Appl. (4),2015

4. Inégalités isopérimétriques et applications;Bérard;Ann. Sci. École Norm. Sup. (4),1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3