Deformations of Pre-symplectic Structures and the Koszul L∞-algebra

Author:

Schätz Florian1,Zambon Marco2

Affiliation:

1. Mathematics Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg

2. Department of Mathematics, KU Leuven, Celestijnenlaan, Leuven, Belgium

Abstract

Abstract We study the deformation theory of pre-symplectic structures, that is, closed 2-forms of fixed rank. The main result is a parametrization of nearby deformations of a given pre-symplectic structure in terms of an $L_{\infty }$-algebra, which we call the Koszul $L_{\infty }$-algebra. This $L_{\infty }$-algebra is a cousin of the Koszul dg Lie algebra associated to a Poisson manifold. In addition, we show that a quotient of the Koszul $L_{\infty }$-algebra is isomorphic to the $L_{\infty }$-algebra that controls the deformations of the underlying characteristic foliation. Finally, we show that the infinitesimal deformations of pre-symplectic structures and of foliations are both obstructed.

Funder

Pesquisador Visitante Especial

Interuniversity Attraction Pole Dygest

Methusalem grant of the Flemish Government

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference21 articles.

1. Higher Deligne groupoids, derived brackets and deformation problems in holomorphic Poisson geometry.” PhD Thesis, Università di Roma La Sapienza;Bandiera,2014

2. On coisotropic deformations of holomorphic submanifolds;Bandiera;J. Math. Sci. Univ. Tokyo,2015

3. De Rham cohomology and homotopy Frobenius manifolds;Dotsenko;J. Eur. Math. Soc.,2015

4. Formality of Koszul brackets and deformations of holomorphic Poisson manifolds;Fiorenza;Homol. Homotopy Appl.,2012

5. Simultaneous deformations and Poisson geometry;Frégier;Compos. Math.,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On deformations of coisotropic submanifolds with fixed characteristic foliation;Letters in Mathematical Physics;2023-12-22

2. Deformations of symplectic foliations;Advances in Mathematics;2022-08

3. The deformation L∞ algebra of a Dirac–Jacobi structure;Differential Geometry and its Applications;2022-02

4. Gauge equivalences for foliations and pre-symplectic structures;Communications in Contemporary Mathematics;2020-11-30

5. Coisotropic characteristic classes;Annales mathématiques du Québec;2019-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3