Statistically Convex-Cocompact Actions of Groups with Contracting Elements

Author:

Yang Wen-yuan1

Affiliation:

1. Beijing International Center for Mathematical Research (BICMR), Peking University, Haidian District, Beijing, China

Abstract

Abstract This paper presents a study of the asymptotic geometry of groups with contracting elements, with emphasis on a subclass of statistically convex-cocompact (SCC) actions. The class of SCC actions includes relatively hyperbolic groups, CAT(0) groups with rank-1 elements, and mapping class groups acting on Teichmüller spaces, among others. We exploit an extension lemma to prove that a group with SCC actions contains large free sub-semigroups, has purely exponential growth, and contains a class of barrier-free sets with a growth-tight property. Our study produces new results and recovers existing ones for many interesting groups through a unified and elementary approach.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference83 articles.

1. Formal conjugacy growth in acylindrically hyperbolic groups;Antolín;Int. Math. Res. Not.,2017

2. Growth tight actions;Arzhantseva;Pacific Journal of Mathematics,2015

3. Growth tightness for word hyperbolic groups;Arzhantseva;Math. Z.,2002

4. Contracting geodesics in infinitely presented graphical small cancellation groups;Arzhantseva

5. Lattice point asymptotics and volume growth on Teichmüller space;Athreya;Duke Math. J.,2012

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Dimension of Limit Sets on ℙ(ℝ3) via Stationary Measures: Variational Principles and Applications;International Mathematics Research Notices;2024-09-09

2. Equidistribution of hyperbolic groups in homogeneous spaces;Mathematische Annalen;2024-04-21

3. Patterson–Sullivan theory for groups with a strongly contracting element;Ergodic Theory and Dynamical Systems;2024-03-05

4. Pressure at infinity and strong positive recurrence in negative curvature;Commentarii Mathematici Helvetici;2023-10-24

5. Random walks on mapping class groups;EMS Surveys in Mathematical Sciences;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3