On Representation of Integers from Thin Subgroups of SL(2, ℤ) with Parabolics

Author:

Zhang Xin1

Affiliation:

1. Department of Mathematics, University of Illinois at Urbana-Champaign

Abstract

Abstract Let $\Lambda <SL(2,\mathbb{Z})$ be a finitely generated, nonelementary Fuchsian group of the 2nd kind, and $\mathbf{v},\mathbf{w}$ be two primitive vectors in $\mathbb{Z}^2\!-\!\mathbf{0}$. We consider the set $\mathcal{S}\!=\!\{\left \langle \mathbf{v}\gamma ,\mathbf{w}\right \rangle _{\mathbb{R}^2}\!:\!\gamma\! \in\! \Lambda \}$, where $\left \langle \cdot ,\cdot \right \rangle _{\mathbb{R}^2}$ is the standard inner product in $\mathbb{R}^2$. Using Hardy–Littlewood circle method and some infinite co-volume lattice point counting techniques developed by Bourgain, Kontorovich, and Sarnak, together with Gamburd’s 5/6 spectral gap, we show that if $\Lambda $ has parabolic elements, and the critical exponent $\delta $ of $\Lambda $ exceeds 0.998317, then a density-one subset of all admissible integers (i.e., integers passing all local obstructions) are actually in $\mathcal{S}$, with a power savings on the size of the exceptional set (i.e., the set of admissible integers failing to appear in $\mathcal{S}$). This supplements a result of Bourgain–Kontorovich, which proves a density-one statement for the case when $\Lambda $ is free, finitely generated, has no parabolics, and has critical exponent $\delta>0.999950$.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Primes and almost primes on orbits of group actions;SCIENTIA SINICA Mathematica;2024-07-29

2. On length sets of subarithmetic hyperbolic manifolds;Mathematische Annalen;2023-09-02

3. Logarithmic diameter bounds for some Cayley graphs;Journal of Group Theory;2021-10-09

4. Local-global principles in circle packings;Compositio Mathematica;2019-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3