Affiliation:
1. Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
2. IRMAR, Campus de Beaulieu, Bâtiments Avenue du Général Leclerc, CS RENNES Cédex, France
Abstract
Abstract
Let $k$ be an algebraically closed field of characteristic $0$, let $N\in{\mathbb{N}}$, let $g:{\mathbb{P}}^1{\longrightarrow } {\mathbb{P}}^1$ be a nonconstant morphism, and let $A:{\mathbb{A}}^N{\longrightarrow } {\mathbb{A}}^N$ be a linear transformation defined over $k({\mathbb{P}}^1)$, that is, for a Zariski-open dense subset $U\subset{\mathbb{P}}^1$, we have that for $x\in U(k)$, the specialization $A(x)$ is an $N$-by-$N$ matrix with entries in $k$. We let $f:{\mathbb{P}}^1\times{\mathbb{A}}^N{\dashrightarrow } {\mathbb{P}}^1\times{\mathbb{A}}^N$ be the rational endomorphism given by $(x,y)\mapsto (\,g(x), A(x)y)$. We prove that if $g$ induces an automorphism of ${\mathbb{A}}^1\subset{\mathbb{P}}^1$, then each irreducible curve $C\subset{\mathbb{A}}^1\times{\mathbb{A}}^N$ that intersects some orbit $\mathcal{O}_f(z)$ in infinitely many points must be periodic under the action of $f$. Furthermore, in the case $g:{\mathbb{P}}^1{\longrightarrow } {\mathbb{P}}^1$ is an endomorphism of degree greater than $1$, then we prove that each irreducible subvariety $Y\subset{\mathbb{P}}^1\times{\mathbb{A}}^N$ intersecting an orbit $\mathcal{O}_f(z)$ in a Zariski dense set of points must be periodic. Our results provide the desired conclusion in the Dynamical Mordell–Lang Conjecture in a couple new instances. Moreover, our results have interesting consequences toward a conjecture of Rubel and toward a generalized Skolem–Mahler–Lech problem proposed by Wibmer in the context of difference equations. In the appendix it is shown that the results can also be used to construct Picard–Vessiot extensions in the ring of sequences.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Oxford University Press (OUP)
Reference25 articles.
1. A finiteness theorem for canonical heights attached to rational maps over function fields;Baker;J. Reine Angew. Math.,2009
2. The dynamical Mordell-Lang problem for étale maps;Bell;Amer. J. Math.,2010
3. The dynamical Mordell-Lang problem for Noetherian spaces;Bell;Funct. Approx. Comment. Math.,2015
4. The dynamical Mordell-Lang conjecture;Bell
5. “Heights and preperiodic points of polynomials over function fields;Benedetto;Int. Math. Res. Not.,2005
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献