The Dynamical Mordell–Lang Conjecture for Skew-Linear Self-Maps. Appendix by Michael Wibmer

Author:

Ghioca Dragos1,Xie Junyi2

Affiliation:

1. Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

2. IRMAR, Campus de Beaulieu, Bâtiments Avenue du Général Leclerc, CS RENNES Cédex, France

Abstract

Abstract Let $k$ be an algebraically closed field of characteristic $0$, let $N\in{\mathbb{N}}$, let $g:{\mathbb{P}}^1{\longrightarrow } {\mathbb{P}}^1$ be a nonconstant morphism, and let $A:{\mathbb{A}}^N{\longrightarrow } {\mathbb{A}}^N$ be a linear transformation defined over $k({\mathbb{P}}^1)$, that is, for a Zariski-open dense subset $U\subset{\mathbb{P}}^1$, we have that for $x\in U(k)$, the specialization $A(x)$ is an $N$-by-$N$ matrix with entries in $k$. We let $f:{\mathbb{P}}^1\times{\mathbb{A}}^N{\dashrightarrow } {\mathbb{P}}^1\times{\mathbb{A}}^N$ be the rational endomorphism given by $(x,y)\mapsto (\,g(x), A(x)y)$. We prove that if $g$ induces an automorphism of ${\mathbb{A}}^1\subset{\mathbb{P}}^1$, then each irreducible curve $C\subset{\mathbb{A}}^1\times{\mathbb{A}}^N$ that intersects some orbit $\mathcal{O}_f(z)$ in infinitely many points must be periodic under the action of $f$. Furthermore, in the case $g:{\mathbb{P}}^1{\longrightarrow } {\mathbb{P}}^1$ is an endomorphism of degree greater than $1$, then we prove that each irreducible subvariety $Y\subset{\mathbb{P}}^1\times{\mathbb{A}}^N$ intersecting an orbit $\mathcal{O}_f(z)$ in a Zariski dense set of points must be periodic. Our results provide the desired conclusion in the Dynamical Mordell–Lang Conjecture in a couple new instances. Moreover, our results have interesting consequences toward a conjecture of Rubel and toward a generalized Skolem–Mahler–Lech problem proposed by Wibmer in the context of difference equations. In the appendix it is shown that the results can also be used to construct Picard–Vessiot extensions in the ring of sequences.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference25 articles.

1. A finiteness theorem for canonical heights attached to rational maps over function fields;Baker;J. Reine Angew. Math.,2009

2. The dynamical Mordell-Lang problem for étale maps;Bell;Amer. J. Math.,2010

3. The dynamical Mordell-Lang problem for Noetherian spaces;Bell;Funct. Approx. Comment. Math.,2015

4. The dynamical Mordell-Lang conjecture;Bell

5. “Heights and preperiodic points of polynomials over function fields;Benedetto;Int. Math. Res. Not.,2005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. -adic interpolation of orbits under rational maps;Proceedings of the American Mathematical Society;2023-08-18

2. Dynamical Mordell–Lang conjecture for totally inseparable liftings of Frobenius;Mathematische Annalen;2023-08-03

3. Remarks on algebraic dynamics in positive characteristic;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-01-27

4. THE EXISTENCE OF ZARISKI DENSE ORBITS FOR ENDOMORPHISMS OF PROJECTIVE SURFACES;J AM MATH SOC;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3