The Distribution of Phase Shifts for Semiclassical Potentials with Polynomial Decay

Author:

Gell-Redman Jesse1,Hassell Andrew2

Affiliation:

1. School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010 Australia

2. Mathematical Sciences Institute, Australian National University, Canberra, ACT 2600 Australia

Abstract

Abstract This is the 3rd paper in a series [6, 9] analyzing the asymptotic distribution of the phase shifts in the semiclassical limit. We analyze the distribution of phase shifts, or equivalently, eigenvalues of the scattering matrix $S_h$, at some fixed energy $E$, for semiclassical Schrödinger operators on $\mathbb{R}^d$ that are perturbations of the free Hamiltonian $h^2 \Delta $ on $L^2(\mathbb{R}^d)$ by a potential $V$ with polynomial decay. Our assumption is that $V(x) \sim |x|^{-\alpha } v(\hat x)$ as $x \to \infty $, $\hat x = x/|x|$, for some $\alpha> d$, with corresponding derivative estimates. In the semiclassical limit $h \to 0$, we show that the atomic measure on the unit circle defined by these eigenvalues, after suitable scaling in $h$, tends to a measure $\mu $ on $\mathbb{S}^1$. Moreover, $\mu $ is the pushforward from $\mathbb{R}$ to $\mathbb{R} / 2 \pi \mathbb{Z} = \mathbb{S}^1$ of a homogeneous distribution. As a corollary we obtain an asymptotic formula for the accumulation of phase shifts in a sector of $\mathbb{S}^1$. The proof relies on an extension of results in [14] on the classical Hamiltonian dynamics and semiclassical Poisson operator to the larger class of potentials under consideration here.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference31 articles.

1. Structure of the semi-classical amplitude for general scattering relations;Alexandrova;Comm. Partial Differential Equations,2005

2. Asymptotic behavior of limit phases for scattering by potentials without spherical symmetry;Birman;Theoret. Math. Phys.,1982

3. Asymptotic behaviour of the spectrum of the scattering matrix;Birman;J. Sov. Math.,1984

4. Spectral properties of the scattering matrix;Birman;St. Petersburg Math. J.,1993

5. The spectral density of the scattering matrix for high energies;Bulger;Comm. Math. Phys.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3