Manifolds with Odd Euler Characteristic and Higher Orientability

Author:

Hoekzema Renee S1

Affiliation:

1. Mathematical Institute, University of Oxford, Woodstock Road, Oxford, UK

Abstract

Abstract It is well known that odd-dimensional manifolds have Euler characteristic zero. Furthermore, orientable manifolds have an even Euler characteristic unless the dimension is a multiple of $4$. We prove here a generalisation of these statements: a $k$-orientable manifold (or more generally Poincaré complex) has even Euler characteristic unless the dimension is a multiple of $2^{k+1}$, where we call a manifold $k$-orientable if the i-th Stiefel–Whitney class vanishes for all $0<i< 2^k$ ($k\geq 0$). More generally, we show that for a $k$-orientable manifold the Wu classes $v_l$ vanish for all $l$ that are not a multiple of $2^k$. For $k=0,1,2,3$, $k$-orientable manifolds with odd Euler characteristic exist in all dimensions $2^{k+1}m$, but whether there exists a 4-orientable manifold with an odd Euler characteristic is an open question.

Funder

Hendrik Mullerfonds

Fundatie van Renswoude

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference15 articles.

1. Multiplicative orientations of KO-theory and the spectrum of topological modular forms.”;Ando

2. Clifford modules;Atiyah;Topology,1964

3. Relations among characteristic classes -I;Brown;Topology,1964

4. Vollständigkeit der Wuschen Relationen zwischen den Stiefel-Whitneyschen Zahlen differenzierbarer Mannigfaltigkeiten;Dold;Math. Z.,1956

5. Homological obstructions to string orientations;Douglas;Int. Math. Res. Not. IMRN,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalizations and Open Problems;SpringerBriefs in Electrical and Computer Engineering;2023

2. The octonionic projective plane;2019-20 MATRIX Annals;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3