Dirichlet Uniformly Well-approximated Numbers

Author:

Kim Dong Han1,Liao Lingmin2

Affiliation:

1. Department of Mathematics Education, Dongguk University - Seoul, Jung-gu, Seoul, Korea

2. Laboratoire d'Analyse et de Mathématiques Appliquées (UMR 8050 CNRS), Université Paris-Est Créteil, Cedex, France

Abstract

Abstract Fix an irrational number θ. For a real number τ > 0, consider the numbers y satisfying that for all large number Q, there exists an integer 1 ≤ n ≤ Q, such that ∥nθ − y∥ < Q−τ, where ∥⋅∥ is the distance of a real number to its nearest integer. These numbers are called Dirichlet uniformly well-approximated numbers. For any τ > 0, the Haussdorff dimension of the set of these numbers is obtained and is shown to depend on the Diophantine property of θ. It is also proved that with respect to τ, the only possible discontinuous point of the Hausdorff dimension is τ = 1.

Funder

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference37 articles.

1. Three distance theorems and combinatorics on words;Alessandri;Enseign. Math.,1998

2. Sets of fractional dimensions (IV): On rational approximation to real numbers;Besicovitch;J. Lond. Math. Soc,1934

3. The Duffin–Schaeffer conjecture with extra divergence II;Beresnevich;Math. Z.,2013

4. A note on inhomogeneous diophantine approximation;Bugeaud;Glasg. Math. J.,2003

5. On exponents of homogeneous and inhomogeneous Diophantine approximation;Bugeaud;Moscow. Math. J,2005

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A variational principle in the parametric geometry of numbers;Advances in Mathematics;2024-02

2. Dynamics of Ostrowski skew-product: 1. Limit laws and Hausdorff dimensions;Transactions of the American Mathematical Society;2023-09-01

3. Uniform approximation problems of expanding Markov maps;Ergodic Theory and Dynamical Systems;2023-02-15

4. Hausdorff dimension of Dirichlet non-improvable set versus well-approximable set;Ergodic Theory and Dynamical Systems;2022-08-04

5. Sets of exact approximation order by complex rational numbers;Mathematische Zeitschrift;2021-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3