On Integral Cohomology of Certain Orbifolds

Author:

Bahri Anthony1,Notbohm Dietrich2,Sarkar Soumen3,Song Jongbaek4

Affiliation:

1. Department of Mathematics, Rider University, NJ 08648, USA

2. Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

3. Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India

4. Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

Abstract

Abstract The CW-complex structure of certain spaces, such as effective orbifolds, can be too complicated for computational purposes. In this paper we develop the concept of $\mathbf{q}$-CW complex structure on an orbifold, to detect torsion in its integral cohomology. The main result can be applied to well-known classes of orbifolds or algebraic varieties having orbifold singularities, such as toric orbifolds, simplicial toric varieties, torus orbifolds, and weighted Grassmannians.

Funder

Simons Foundation

National Research Foundation of Korea

Ministry of Science, ICT and Future Planning

Ministry of Education

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference33 articles.

1. Equivariant cohomology of weighted Grassmannians and weighted Schubert classes;Abe;Int. Math. Res. Not. IMRN,2015

2. Orbifolds and Stringy Topology;Adem,2007

3. Cohomological Study of Weighted Projective Spaces;Al Amrani,1997

4. Intersection Theory of Weighted Lens Spaces;Al Amrani,2014

5. Cohomologies of certain orbifolds;Angella;J. Geom. Phys.,2013

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integral generalized equivariant cohomologies of weighted Grassmann orbifolds;Algebraic & Geometric Topology;2024-07-16

2. Blowdown, k-wedge and evenness of quasitoric orbifolds;Topology and its Applications;2024-07

3. Conic decomposition of a toric variety and its application to cohomology;P AM MATH SOC;2021-10-21

4. Equivariant $K$-theory of toric orbifolds;Journal of the Mathematical Society of Japan;2021-07-27

5. The homotopy classification of four-dimensional toric orbifolds;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2021-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3