Crystallization of Random Matrix Orbits

Author:

Gorin Vadim12,Marcus Adam W3

Affiliation:

1. Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

2. Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow, Russia

3. Department of Mathematics, Princeton University, Princeton, NJ, USA

Abstract

Abstract Three operations on eigenvalues of real/complex/quaternion (corresponding to $\beta =1,2,4$) matrices, obtained from cutting out principal corners, adding, and multiplying matrices, can be extrapolated to general values of $\beta>0$ through associated special functions. We show that the $\beta \to \infty $ limit for these operations leads to the finite free projection, additive convolution, and multiplicative convolution, respectively. The limit is the most transparent for cutting out the corners, where the joint distribution of the eigenvalues of principal corners of a uniformly-random general $\beta $ self-adjoint matrix with fixed eigenvalues is known as the $\beta $-corners process. We show that as $\beta \to \infty $ these eigenvalues crystallize on an irregular lattice consisting of the roots of derivatives of a single polynomial. In the second order, we observe a version of the discrete Gaussian Free Field put on top of this lattice, which provides a new explanation as to why the (continuous) Gaussian Free Field governs the global asymptotics of random matrix ensembles.

Funder

National Science Foundation

Sloan Research Fellowship

The Foundation Sciences Mathématiques de Paris

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The fractional free convolution of R-diagonal elements and random polynomials under repeated differentiation;International Mathematics Research Notices;2024-04-08

2. Extremal singular values of random matrix products and Brownian motion on $$\textsf {GL} (N,\mathbb {C})$$;Probability Theory and Related Fields;2023-09-20

3. Universal objects of the infinite beta random matrix theory;Journal of the European Mathematical Society;2023-06-07

4. Lyapunov exponents for truncated unitary and Ginibre matrices;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2023-05-01

5. A Determinantal Identity for the Permanent of a Rank 2 Matrix;The American Mathematical Monthly;2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3