Deformation of Dirac Structures via L∞ Algebras

Author:

Gualtieri Marco1,Matviichuk Mykola1,Scott Geoffrey1

Affiliation:

1. University of Toronto

Abstract

Abstract The deformation theory of a Dirac structure is controlled by a differential graded Lie algebra that depends on the choice of an auxiliary transversal Dirac structure; if the transversal is not involutive, one obtains an $L_\infty $ algebra instead. We develop a simplified method for describing this $L_\infty $ algebra and use it to prove that the $L_\infty $ algebras corresponding to different transversals are canonically $L_\infty $–isomorphic. In some cases, this isomorphism provides a formality map, as we show in several examples including (quasi)-Poisson geometry, Dirac structures on Lie groups, and Lie bialgebras. Finally, we apply our result to a classical problem in the deformation theory of complex manifolds; we provide explicit formulas for the Kodaira–Spencer deformation complex of a fixed small deformation of a complex manifold, in terms of the deformation complex of the original manifold.

Funder

Institut Henri Poincaré

Fondation Mathématique Jacques Hadamard

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference34 articles.

1. Lie group valued moment maps;Alekseev;J. Differential Geom.,1998

2. Pure spinors on Lie groups;Alekseev;Astérisque,2009

3. Quasi-Poisson manifolds;Alekseev;Canad. J. Math.,2002

4. The BV formalism for $L_\infty $-algebras;Bashkirov;J. Homotopy Relat. Struct.,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Weak Graded Lie 2-Algebra of Multiplicative Forms on a Quasi-Poisson Groupoid;Communications in Mathematical Physics;2024-06-23

2. An introduction to L∞-algebras and their homotopy theory for the working mathematician;Reviews in Mathematical Physics;2023-09-20

3. Stability of fixed points of Dirac structures;Letters in Mathematical Physics;2023-07-11

4. Deformations of symplectic foliations;Advances in Mathematics;2022-08

5. The deformation L∞ algebra of a Dirac–Jacobi structure;Differential Geometry and its Applications;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3