Connectedness and Lyubeznik Numbers

Author:

Núñez-Betancourt Luis1,Spiroff Sandra2,Witt Emily E3

Affiliation:

1. Centro de Investigación en Matemáticas, Guanajuato, Gto, México, Mexico

2. Department of Mathematics, University of Mississippi, University, MS, USA

3. Department of Mathematics, University of Kansas, Lawrence, KS, USA

Abstract

Abstract We investigate the relationship between connectedness properties of spectra and the Lyubeznik numbers, numerical invariants defined via local cohomology. We prove that for complete equidimensional local rings, the Lyubeznik numbers characterize when connectedness dimension equals 1. More generally, these invariants determine a bound on connectedness dimension. Additionally, our methods imply that the Lyubeznik number $\lambda _{1,2}(A)$ of the local ring $A$ at the vertex of the affine cone over a projective variety is independent of the choice of its embedding into projective space.

Funder

National Science Foundation

Consejo Nacional de Ciencia y Tecnología

Simons Foundation

Division of Mathematical Sciences

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference25 articles.

1. On the relationship between depth and cohomological dimension;Dao;Compos. Math.,2016

2. A contribution to the theory of formal meromorphic functions;Faltings;Nagoya Math. J.,1980

3. Some theorems about formal functions;Faltings;Publ. Res. Inst. Math. Sci.,1980

4. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2);Grothendieck,1968

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lyubeznik numbers, -modules and modules of generalized fractions;Transactions of the American Mathematical Society;2022-07-13

2. Connectedness of square-free Groebner deformations;Proceedings of the American Mathematical Society;2022-01-13

3. Local Cohomology—An Invitation;Commutative Algebra;2021

4. A generalized Serre’s condition;Communications in Algebra;2019-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3