Popular Progression Differences in Vector Spaces

Author:

Fox Jacob1,Pham Huy Tuan2

Affiliation:

1. Department of Mathematics, Stanford University, Stanford, CA, USA

2. Stanford University, Stanford, CA, USA

Abstract

Abstract Green proved an arithmetic analog of Szemerédi’s celebrated regularity lemma and used it to verify a conjecture of Bergelson, Host, and Kra, which sharpens Roth’s theorem on three-term arithmetic progressions in dense sets. It shows that for every subset of $\mathbb{F}_p^n$ with $n$ sufficiently large, the density of three-term arithmetic progressions with some nonzero common difference is at least the random bound (the cube of the set density) up to an additive $\epsilon $. For a fixed odd prime $p$, we prove that the required dimension grows as an exponential tower of $p$’s of height $\Theta (\log (1/\epsilon ))$. This improves both the lower and upper bound, and is the first example of a result where a tower-type bound coming from applying a regularity lemma is shown to be necessary.

Funder

National Science Foundation

Alfred P. Sloan Foundation

Stanford Undergraduate Research Institute in Mathematics

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference35 articles.

1. On sunflowers and matrix multiplication;Alon;Comput. Complexity,2013

2. New bounds on cap sets;Bateman;J. Amer. Math. Soc.,2012

3. Multiple recurrence and nilsequences;Bergelson;Invent. Math.,2005

4. On cap sets and the group-theoretic approach to matrix multiplication;Blasiak;Discrete Analysis,2017

5. A quantitative improvement for Roth’s theorem on arithmetic progressions;Bloom;J. London Math. Soc.,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blocking sets, minimal codes and trifferent codes;Journal of the London Mathematical Society;2024-05-26

2. Tower-type bounds for Roth’s theorem with popular differences;Journal of the European Mathematical Society;2022-09-27

3. Removal lemmas and approximate homomorphisms;Combinatorics, Probability and Computing;2022-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3