Morita Equivalences of Vector Bundles

Author:

del Hoyo Matias1,Ortiz Cristian2

Affiliation:

1. Universidade Federal Fluminense (UFF), Departamento de Geometria (GGM). Rua Prof. Marcos W. de Freitas Reis s/n, Campus Gragoatá G, RJ, Brasil

2. Universidade de São Paulo (USP), Instituto de Matemática e Estatística (IME)., São Paulo, SP, Brasil

Abstract

Abstract We study vector bundles over Lie groupoids, known as VB-groupoids, and their induced geometric objects over differentiable stacks. We establish a fundamental theorem that characterizes VB-Morita maps in terms of fiber and basic data, and use it to prove the Morita invariance of VB-cohomology, with implications to deformation cohomology of Lie groupoids and of classic geometries. We discuss applications of our theory to Poisson geometry, providing a new insight over Marsden–Weinstein reduction and the integration of Dirac structures. We conclude by proving that the derived category of VB-groupoids is a Morita invariant, which leads to a notion of VB-stacks, and solves (an instance of) an open question on representations up to homotopy.

Funder

Associação Viver a Ciência

São Paulo Research Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference31 articles.

1. Representations up to homotopy and Bott’s spectral sequence for Lie groupoids;Arias Abad;Adv. Math.,2013

2. Differentiable stacks and gerbes;Behrend;J. Symplectic Geom.,2011

3. String topology for stacks;Behrend;Astérisque,2012

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shifted Contact Structures on Differentiable Stacks;International Mathematics Research Notices;2024-07-05

2. Morse theory on Lie groupoids;Mathematische Zeitschrift;2024-05-31

3. Lie Groupoids;Reference Module in Materials Science and Materials Engineering;2024

4. Shifted symplectic higher Lie groupoids and classifying spaces;Advances in Mathematics;2023-01

5. Deformations of vector bundles over Lie groupoids;Revista Matemática Complutense;2022-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3