Affiliation:
1. South Subtropical Crops Research Institute , Chinese Academy of Tropical Agricultural Sciences/Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, 524091 Zhanjiang, Guangdong, China
2. Wuhan Onemore-tech Co., Ltd, 430076 Wuhan , Hubei, China
3. Biomarker Technologies Corporation , 101300 Beijing, China
Abstract
Abstract
The subfamily Agavoideae comprises crassulacean acid metabolism (CAM), C3, and C4 plants with a young age of speciation and slower mutation accumulation, making it a model crop for studying CAM evolution. However, the genetic mechanism underlying CAM evolution remains unclear because of lacking genomic information. This study assembled the genome of Agave hybrid NO.11648, a constitutive CAM plant belonging to subfamily Agavoideae, at the chromosome level using data generated from high-throughput chromosome conformation capture, Nanopore, and Illumina techniques, resulting in 30 pseudo-chromosomes with a size of 4.87 Gb and scaffold N 50 of 186.42 Mb. The genome annotation revealed 58,841 protein-coding genes and 76.91 % repetitive sequences, with the dominant repetitive sequences being the I-type repeats (Copia and Gypsy accounting for 18.34% and 13.5% of the genome, respectively). Our findings also provide support for a whole genome duplication event in the lineage leading to A. hybrid, which occurred after its divergence from subfamily Asparagoideae. Moreover, we identified a gene duplication event in the phosphoenolpyruvate carboxylase kinase (PEPCK) gene family and revealed that three PEPCK genes (PEPCK3, PEPCK5, and PEPCK12) were involved in the CAM pathway. More importantly, we identified transcription factors enriched in the circadian rhythm, MAPK signaling, and plant hormone signal pathway that regulate the PEPCK3 expression by analyzing the transcriptome and using yeast one-hybrid assays. Our results shed light on CAM evolution and offer an essential resource for the molecular breeding program of Agave spp.
Publisher
Oxford University Press (OUP)
Subject
Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献