The dynamic arms race during the early invasion of woodland strawberry by Botrytis cinerea revealed by dual dense high-resolution RNA-seq analyses

Author:

Bai Yibo12,Wang Haibin1,Zhu Kaikai3,Cheng Zong-Ming1

Affiliation:

1. Nanjing Agricultural University College of Horticulture, , Nanjing 210095, China

2. Chinese Academy of Tropical Agricultural Sciences Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture; Tropical Crops Genetic Resources Institute, , Haikou 571101, China

3. Nanjing Forestry University Co-innovation Center for Sustainable Forestry in Southern China, , Nanjing, Jiangsu 210037, China

Abstract

Abstract Necrotrophic pathogens replicate massively upon colonizing plants, causing large-scale wilting and death of plant tissues. Understanding both mechanisms of pathogen invasion and host response processes prior to symptom appearance and their key regulatory networks is therefore important for defense against pathogen attack. Here, we investigated the mechanisms of interaction between woodland strawberry (Fragaria vesca) leaves and gray mold pathogen (Botrytis cinerea) at 14 infection time points during the first 12 hours of the infection period using a dense, high-resolution time series dual transcriptomic analysis, characterizing the arms race between strawberry F. vesca and B. cinerea before the appearance of localized lesions. Strawberry leaves rapidly initiated strong systemic defenses at the first sign of external stimulation and showed lower levels of transcriptomic change later in the infection process. Unlike the host plants, B. cinerea showed larger-scale transcriptomic changes that persisted throughout the infection process. Weighted gene co-expression network analysis identified highly correlated genes in 32 gene expression modules between B. cinerea and strawberry. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that the disease response protein FvRLP2 from woodland strawberry interacted with the cell death inducing proteins BcXYG1 and BcPG3 from B. cinerea. Overexpression of FvRLP2 in both strawberry and Arabidopsis inhibited B. cinerea infection, confirming these genes’ respective functions. These findings shed light on the arms race process by which B. cinerea invades host plants and strawberry to defend against pathogen infection.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3