Uncovering the miRNA-mediated regulatory network involved in Ma bamboo (Dendrocalamus latiflorus) de novo shoot organogenesis

Author:

Wang Nannan12,Wang Wenjia12,Cheng Yang12,Cai Changyang12,Zhu Qiang12

Affiliation:

1. Basic Forestry and Proteomics Center (BFPC) , College of Forestry, HaiXia Institute for Science and Technology, , Fuzhou 350002, China

2. Fujian Agriculture and Forestry University , College of Forestry, HaiXia Institute for Science and Technology, , Fuzhou 350002, China

Abstract

Abstract Bamboo is an important non-timber forest product and is well-known for its reluctance to regenerate. Recently we have established a de novo shoot organogenesis (DNSO) protocol in Ma bamboo (Dendrocalamus latiflorus) and revealed the transcriptomic dynamics during Ma bamboo regeneration, which suggested the potential roles of Ma bamboo microRNAs (DlamiRNAs) in this process. However, how DlamiRNAs regulate bamboo DNSO is poorly understood. Here we performed integrated analysis with sRNAome, degradome, and transcriptome sequencing by using samples covering the four stages of the bamboo DNSO process. A total of 727 DlamiRNAs showed differential expression during the bamboo DNSO process, and the core DlamiRNA–DlamRNA- mediated regulatory networks for bamboo DNSO were constructed. Based on the results, DlamiR156 was selected for further functional characterization of its potential roles in bamboo DNSO. Transgenic bamboos with increased DlamiR156 levels exhibited an enhancement in their regeneration efficiency. Conversely, when DlamiR156 levels were downregulated, the regeneration efficiencies of transgenic bamboos decreased. Our findings show that the DlamiRNA-mediated regulatory pathways are significant in the process of bamboo regeneration and will contribute to our understanding of the molecular mechanisms governing plant organogenesis in a more comprehensive manner.

Funder

Construction of Plateau Discipline of Fujian Province

National Key Research and Development Program of China

the Fujian Province Forestry Science and Technology Project

the Natural Science Foundation of Fujian Province

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3