Genome-wide association analysis identifies a candidate gene controlling seed size and yield in Xanthoceras sorbifolium Bunge

Author:

Zhao Ziquan1,Liang Chongjun12,Zhang Wei1,Yang Yingying1,Bi Quanxin1,Yu Haiyan1,Wang Libing123

Affiliation:

1. Research Institute of Forestry Chinese Academy of Forestry State Key Laboratory of Tree Genetics and Breeding, , Beijing 100091, China

2. Hainan University College of Forestry, , Haikou 570228, China

3. Northwest A&F University College of Forestry, , Yangling 712100, China

Abstract

Abstract Yellow horn (Xanthoceras sorbifolium Bunge) is a woody oilseed tree species whose seed oil is rich in unsaturated fatty acids and rare neuronic acids, and can be used as a high-grade edible oil or as a feedstock for biodiesel production. However, the genetic mechanisms related to seed yield in yellow horn are not well elucidated. This study identified 2 164 863 SNP loci based on 222 genome-wide resequencing data of yellow horn germplasm. We conducted genome-wide association study (GWAS) analysis on three core traits (hundred-grain weight, single-fruit seed mass, and single-fruit seed number) that influence seed yield for the years 2022 and 2020, and identified 399 significant SNP loci. Among these loci, the Chr10_24013014 and Chr10_24012613 loci caught our attention due to their consistent associations across multiple analyses. Through Sanger sequencing, we validated the genotypes of these two loci across 16 germplasms, confirming their consistency with the GWAS analysis results. Downstream of these two significant loci, we identified a candidate gene encoding an AP2 transcription factor protein, which we named XsAP2. RT–qPCR analysis revealed high expression of the XsAP2 gene in seeds, and a significant negative correlation between its expression levels and seed hundred-grain weight, as well as single-fruit seed mass, suggesting its potential role in the normal seed development process. Transgenic Arabidopsis lines with the overexpressed XsAP2 gene exhibited varying degrees of reduction in seed size, number of seeds per silique, and number of siliques per plant compared with wild-type Arabidopsis. Combining these results, we hypothesize that the XsAP2 gene may have a negative regulatory effect on seed yield of yellow horn. These results provide a reference for the molecular breeding of high-yielding yellow horn.

Funder

State and Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3