Establishment of new convenient two-line system for hybrid production by targeting mutation of OPR3 in allopolyploid Brassica napus

Author:

Cheng Hongtao1ORCID,Hao Mengyu1,Sang Shifei2,Wen Yunfei1,Cai Yating1,Wang Hui1,Wang Wenxiang1,Mei Desheng1,Hu Qiong1

Affiliation:

1. Ministry of Agriculture and Rural Affairs Department of Rapeseed Genetics and Breeding, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, , Wuhan 430062, China

2. Henan Normal University College of Life Sciences, , No. 46 Jianshe East Road, Muye District, Xinxiang, Henan, 453007, China

Abstract

Abstract The two-line pollination control system, which usually depends on the utilization of thermosensitive or photoperiod genic male-sterile lines, has been widely used in various crops. However, this system is susceptible to instability issues caused by uncontrollable weather fluctuations. A stable and handy two-line pollination control system is highly desirable in many crop species for heterosis exploitation. Oxophytodienoic acid reductase 3 (OPR3) was proven to be involved in jasmonate biosynthesis. In the present study, CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat) was utilized to mutate two OPR3 homologs in Brassica napus. After two OPR3 homologs were simultaneously mutated, mutants exhibited complete male sterility, and fertility could be easily restored by exogenous MeJA treatment. Hybrids produced from crosses between the opr3 sterile lines and normal varieties exhibited heterosis. This new two-line system based on OPR3 mutation provides higher stability and convenience than traditional systems. By using exogenous MeJA treatment to restore fertility, the system enables more precise control of male fertility transition, which has great potential to significantly contribute to the maneuverable production of hybrid seeds in rapeseed as well as other Brassica species crops.

Funder

Fundamental Research Funds for Central Non-profit Scientific Institution

Key Research Projects of Hubei Province

National Key Research and Development Program of China

the Sci-Tech Innovation 2030 Agenda

Agricultural Science and Technology Innovation Project

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3