Integrated proteomic analysis reveals interactions between phosphorylation and ubiquitination in rose response to Botrytis infection

Author:

Li Rui1,Yao Juanni1,Ming Yue1,Guo Jia1,Deng Jingjing1,Liu Daofeng2ORCID,Li Zhengguo1,Cheng Yulin1

Affiliation:

1. Chongqing University Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, , Chongqing 401331, China

2. Southwest University Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, , Chongqing 400715, China

Abstract

Abstract As two of the most abundant post-translational modifications, phosphorylation and ubiquitination play a significant role in modulating plant–pathogen interactions and increasing evidence indicates their crosstalk in plant immunity. Rose (Rosa sp.) is one of the most important ornamental plants and can be seriously infected by Botrytis cinerea. Here, integrated proteomics analysis was performed to detect global proteome, phosphorylation, and ubiquitination changes in rose upon B. cinerea infection and investigate the possible phosphorylation and ubiquitination crosstalk. A total of 6165 proteins, 11 774 phosphorylation and 10 582 ubiquitination sites, and 77 phosphorylation and 13 ubiquitination motifs were identified. Botrytis cinerea infection resulted in 169 up-regulated and 122 down-regulated proteins, 291 up-regulated and 404 down-regulated phosphorylation sites, and 250 up-regulated and 634 down-regulated ubiquitination sites. There were 12 up-regulated PR10 proteins and half of them also showed reduced ubiquitination. A lot of kinases probably involved in plant pattern-triggered immunity signaling were up-regulated phosphoproteins. Noticeably, numerous kinases and ubiquitination-related proteins also showed a significant change in ubiquitination and phosphorylation, respectively. A cross-comparison of phosphoproteome and ubiquitylome indicated that both of two post-translational modifications of 104 proteins were dynamically regulated, and many putative pattern-triggered immunity signaling components in the plant plasma membrane were co-regulated. Moreover, five selected proteins, including four PR10 proteins and a plasma membrane aquaporin, were proven to be involved in rose resistance to B. cinerea. Our study provides insights into the molecular mechanisms underlying rose resistance to B. cinerea and also increases the database of phosphorylation and ubiquitination sites in plants.

Funder

Chongqing Talents: Exceptional Young Talents Project

Project of Chongqing Science and Technology Commission

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3