Imparting chiroptical property to achiral azobenzene derivative via incorporation into chiral-controlled helical nanofibers

Author:

Ito Tomoki1,Nakagawa Makoto2,Kawai Takeshi1

Affiliation:

1. Department of Industrial Chemistry, Tokyo University of Science , 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 , Japan

2. Osaka Research Institute of Industrial Science and Technology , 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553 , Japan

Abstract

Abstract Chiral transcription from chiral to achiral organic molecules is a fundamental research area in supramolecular chemistry, organic chemistry, and nanoscience. In this study, we demonstrated that chiral transcription of an achiral azobenzene derivative (Azo) can be achieved by embedding it within helically controlled nanofibers. Helical nanofibers were produced via supramolecular assembly of water-insoluble D-12-hydroxystearic acid (D-HSA) as a chiral source and a water-soluble long-chain amidoamine derivative (C18AA) in water. Azo-incorporated helical nanofibers exhibited a circular dichroism (CD) peak at 350 nm, which was assigned to the π−π* transition band of trans-azobenzene chromophore, suggesting a chiral arrangement of Azo molecules in the nanofibers. Because the nanofibers are dispersed in water and Azo is not soluble in water, the selection of an organic solvent to dissolve Azo is important for the incorporation of Azo molecules. When water-immiscible toluene was used as the solvent, Azo incorporation did not occur, because contact between the nanofibers and Azo was inhibited; however, when water-miscible methanol was used, incorporation was achieved. The incorporation of Azo gradually occurred in the pre-assembled C18AA + D-HSA nanofibers, but co-assembly did not occur during the formation of the C18AA + D-HSA nanofibers. We also showed that Azo-containing nanofibers can undergo a reversible thermal phase transition between gel-to-sol states, switching the CD signal of Azo on and off. Furthermore, trans–cis-photoisomerization of Azo embedded in the nanofibers eliminated the CD peak of the trans-isomer, and no new CD peak corresponding to the cis-isomer appeared.

Funder

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3