Affiliation:
1. Department of Basic Science, School of Arts and Sciences, The University of Tokyo , 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 , Japan
Abstract
Abstract
Stable compositions and H2O desorption processes of SinO2n+iH2i+1+ (nominally, (SiO2)n(H2O)iH+; n = 3 to 10) clusters have been studied by gas-phase thermal desorption spectrometry coupled with density functional theory (DFT) calculations. Five or six H2O molecules were found to be stored (i = 5, 6) mainly in the clusters at room temperature. The clusters sequentially released H2O molecules upon heating to form the species with i = 2 (n = 3–5, 8) and 3 (n = 6, 7, 9, 10) as the most prominent compositions at 1,000 K. The desorption energies of H2O molecules from the clusters were evaluated from the temperature dependence data for n = 3 to 5. The experimental and theoretical results suggest that (SiO2)n(H2O)iH+ clusters with higher i (e.g. i ≥ 4 for n = 3) involve H2O molecules bound with hydrogen bonds and can easily release the H2O molecules (ΔE < ∼0.5 eV); species with lower i (e.g. i = 2 and 3 for n = 3) form H2O molecules from two hydroxide groups, whose desorption requires higher energies (ca. 1 to 2 eV); and H2O release is hampered if the product species does not maintain the structure with tetrahedrally coordinated Si atoms.
Funder
KAKENHI
Japan Society for the Promotion of Science
JSPS
Publisher
Oxford University Press (OUP)