Multiscale characterization of polymer electrolyte fuel cells elucidated by quantum beam analysis

Author:

Yoshimune Wataru1ORCID

Affiliation:

1. Materials Analysis & Evaluation Research-Domain, Toyota Central R&D Labs., Inc. , 41-1 Yokomichi, Nagakute, Aichi 480-1192 , Japan

Abstract

Abstract Polymer electrolyte fuel cells (PEFCs) offer promising alternatives to conventional gasoline engines in automobiles and have been commercialized over the past decade. This progress can be attributed to state-of-the-art materials with high performance, long-term durability, and robust manufacturing technologies. The multiscale hierarchical structure inherent in PEFCs facilitates the transfer of protons, electrons, oxygen, and water. As various phenomena in PEFCs occur at different scales, multiscale analysis, including quantum beam analysis, is of great interest for materials development and for understanding the processes that take place in PEFCs. In particular, advancements in this field have enabled the further tailoring of properties in a controlled manner and the design of nanostructures processing superior material properties. Additionally, the expansion of quantum beam sources has facilitated the study of manufacturing protocols. This review presents the achievements in the use of synchrotron x-ray and neutron sources in the field of PEFCs, while also addressing remaining issues for the widespread commercialization of fuel cell electric vehicles.

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3