Preparation of biomass carbon dots/carboxymethyl cellulose-based fluorescent hydrogel: combines selective detection and visual adsorption for Copper(II)

Author:

Liang Sijie1,Feng Huixia1,Chen Nali1,Wang Bin2,Hu Mengyu1,Huang XiaoXue1,Yang Kai1,Gu Yiming1

Affiliation:

1. College of Petrochemical Engineering, Lanzhou University of Technology , Lanzhou 730050 , P.R. China

2. School of Chemistry, Southwest Jiaotong University , Chengdu 610031 , P.R. China

Abstract

Abstract In this study, we used nitrogen-doped carbon dots (NCDs), which were synthesized via the hydrothermal method of corn-stover biomass as raw material and polyethyleneimine as the nitrogen source, introduced them into the carboxymethyl cellulose (CMC)-based hydrogel to prepare an environmentally friendly fluorescent cellulose-based hydrogel (NCDs/CMC-PAM). NCDs/CMC-PAM was also used for simultaneous fluorescence monitoring and removal of Cu (II) in aqueous solution. The chemical and physical structures, adsorption behaviors and fluorescent properties of NCDs/CMC-PAM were investigated. The results showed that NCDs/CMC-PAM exhibited a well-linear response range of fluorescence response for Cu (II) (0∼100 μM, detection limit of 3.42 μM). NCDs/CMC-PAM showed maximum adsorption capacities of 237.71 mg/g for Cu (II), the adsorption process followed the Langmuir isotherm model and pseudo-second-order kinetic model, which is an exothermic spontaneous reaction with an increase in entropy. It can still maintain 79.03% of the original adsorption capacity after six cycles (pH = 6). The adsorption mechanisms of NCDs/CMC-PAM for Cu (II) are intraparticle diffusion, electrostatic attraction, ion exchange, and ligand interaction. Hence, the present study provides a new green way to synthesize an adsorbent that can be applied for the adsorption and detection of heavy metal ions.

Funder

National Natural Science Foundation of Western China

Ministry of Science and Technology of the People's Republic of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3