Editing Aspergillus terreus using the CRISPR-Cas9 system

Author:

Shih Sra-Yh1,Mortensen Uffe Hasbro2,Chang Fang-Rong13,Tsai HsinYuan14ORCID

Affiliation:

1. Department of Marine Biotechnology and Resources, National Sun Yat-Sen University , Kaohsiung City, Taiwan

2. DTU Bioengineering, Technical University of Denmark , Lyngby, Denmark

3. Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung City, Taiwan

4. Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University , Kaohsiung City, Taiwan

Abstract

Abstract CRISPR-Cas9 technology has been utilized in different organisms for targeted mutagenesis, offering a fast, precise and cheap approach to speed up molecular breeding and study of gene function. Until now, many researchers have established the demonstration of applying the CRISPR/Cas9 system to various fungal model species. However, there are very few guidelines available for CRISPR/Cas9 genome editing in Aspergillus terreus. In this study, we present CRISPR/Cas9 genome editing in A. terreus. To optimize the guide ribonucleic acid (gRNA) expression, we constructed a modified single-guide ribonucleic acid (sgRNA)/Cas9 expression plasmid. By co-transforming an sgRNA/Cas9 expression plasmid along with maker-free donor deoxyribonucleic acid (DNA), we precisely disrupted the lovB and lovR genes, respectively, and created targeted gene insertion (lovF gene) and iterative gene editing in A. terreus (lovF and lovR genes). Furthermore, co-delivering two sgRNA/Cas9 expression plasmids resulted in precise gene deletion (with donor DNA) in the ku70 and pyrG genes, respectively, and efficient removal of the DNA between the two gRNA targeting sites (no donor DNA) in the pyrG gene. Our results showed that the CRISPR/Cas9 system is a powerful tool for precise genome editing in A. terreus, and our approach provides a great potential for manipulating targeted genes and contributions to gene functional study of A. terreus.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Oxford University Press (OUP)

Subject

Agricultural and Biological Sciences (miscellaneous),Biomedical Engineering,Biomaterials,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3