Affiliation:
1. Department of Chemical Engineering, National Chung Hsing University , Taichung, Taiwan
2. Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University , Taichung, Taiwan
Abstract
Abstract
The strong transcriptional activity of the virulent gene pagA in Bacillus anthracis has been proven to be anthrax toxin activator (AtxA)-regulated. However, the obscure pagA transcription mechanism hinders practical applications of this strong promoter. In this study, a 509-bp DNA fragment [termed 509sequence, (−508)-(+1) relative to the P2 transcription start site] was cloned upstream of rbs-GFPuv as pTOL02B to elucidate the AtxA-regulated transcription. The 509sequence was dissected into the −10 sequence, −35 sequence, ATrich tract, SLI/SLII and upstream site. In conjunction with the heterologous co-expression of AtxA (under the control of the T7 promoter), the −10 sequence (TATACT) was sufficient for the AtxA-regulated transcription. Integration of pTOL02F + pTOLAtxA as pTOL03F showed that the AtxA-regulated transcription exhibited a strong specific fluorescence intensity/common analytical chemistry term (OD600) of 40 597 ± 446 and an induction/repression ratio of 122. An improved induction/repression ratio of 276 was achieved by cultivating Escherichia coli/pTOL03F in M9 minimal medium. The newly developed promoter system termed PAtxA consists of AtxA, the −10 sequence and Escherichia RNA polymerase. These three elements synergistically and cooperatively formed a previously undiscovered transcription system, which exhibited a tight-control, high-level, modulable and stationary-phase-specific transcription. The PAtxA was used for phaCAB expression for the stationary-phase polyhydroxybutyrate production, and the results showed that a PHB yield, content and titer of 0.20 ± 0.27 g/g-glucose, 68 ± 11% and 1.5 ± 0.4 g/l can be obtained. The positive inducible PAtxA, in contrast to negative inducible, should be a useful tool to diversify the gene information flow in synthetic biology.
Graphical Abstract
Funder
Ministry of Science and Technology, Taiwan
Publisher
Oxford University Press (OUP)
Subject
Agricultural and Biological Sciences (miscellaneous),Biomedical Engineering,Biomaterials,Bioengineering,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献