Simultaneous monitoring of transcription and translation in mammalian cell-free expression in bulk and in cell-sized droplets

Author:

Wang Shue1,Majumder Sagardip1,Emery Nicholas J12,Liu Allen P1345ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

2. Department of Biomedical Engineering, Boston University, Boston, MA, USA

3. Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA

4. Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA

5. Biophysics Program, University of Michigan, Ann Arbor, MI, USA

Abstract

Abstract Transcription and translation are two critical processes during eukaryotic gene expression that regulate cellular activities. The development of mammalian cell-free expression (CFE) systems provides a platform for studying these two critical processes in vitro for bottom-up synthetic biology applications such as construction of an artificial cell. Moreover, real-time monitoring of the dynamics of synthesized mRNA and protein is key to characterize and optimize gene circuits before implementing in living cells or in artificial cells. However, there are few tools for measurement of mRNA and protein dynamics in mammalian CFE systems. Here, we developed a locked nucleic acid (LNA) probe for monitoring transcription in a HeLa-based CFE system in real-time. By using this LNA probe in conjunction with a fluorescent reporter protein, we were able to simultaneously monitor mRNA and protein dynamics in bulk reactions and cell-sized single-emulsion droplets. We found rapid production of mRNA transcripts that decreased over time as protein production ensued in bulk reactions. Our results also showed that transcription in cell-sized droplets has different dynamics compared to the transcription in bulk reactions. The use of this LNA probe in conjunction with fluorescent proteins in HeLa-based mammalian CFE system provides a versatile in vitro platform for studying mRNA dynamics for bottom-up synthetic biology applications.

Funder

National Institutes of Health

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Agricultural and Biological Sciences (miscellaneous),Biomedical Engineering,Biomaterials,Bioengineering,Biotechnology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3