Evaluation of inducible promoter–riboswitch constructs for heterologous protein expression in the cyanobacterial species Anabaena sp. PCC 7120

Author:

Svoboda Jessee1ORCID,Cisneros Brenda2,Philmus Benjamin12ORCID

Affiliation:

1. College of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA

2. Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA

Abstract

Abstract Cyanobacteria are promising chassis for synthetic biology applications due to the fact that they are photosynthetic organisms capable of growing in simple, inexpensive media. Given their slower growth rate than other model organisms such as Escherichia coli and Saccharomyces cerevisiae, there are fewer synthetic biology tools and promoters available for use in model cyanobacteria. Here, we compared a small library of promoter–riboswitch constructs for synthetic biology applications in Anabaena sp. PCC 7120, a model filamentous cyanobacterium. These constructs were designed from six cyanobacterial promoters of various strengths, each paired with one of two theophylline-responsive riboswitches. The promoter–riboswitch pairs were cloned upstream of a chloramphenicol acetyltransferase (cat) gene, and CAT activity was quantified using an in vitro assay. Addition of theophylline to cultures increased the CAT activity in almost all cases, allowing inducible protein production with natively constitutive promoters. We found that riboswitch F tended to have a lower induced and uninduced production compared to riboswitch E for the weak and medium promoters, although the difference was larger for the uninduced production, in accord with previous research. The strong promoters yielded a higher baseline CAT activity than medium strength and weak promoters. In addition, we observed no appreciable difference between CAT activity measured from strong promoters cultured in uninduced and induced conditions. The results of this study add to the genetic toolbox for cyanobacteria and allow future natural product and synthetic biology researchers to choose a construct that fits their needs.

Funder

Joint Genome institute

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Agricultural and Biological Sciences (miscellaneous),Biomedical Engineering,Biomaterials,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3