Three overlooked key functional classes for building up minimal synthetic cells

Author:

Danchin Antoine12ORCID

Affiliation:

1. Kodikos Labs/Stellate Therapeutics, Institut Cochin, Paris, France

2. School of Biomedical Sciences, Li KaShing Faculty of Medicine, Hong Kong University, Pokfulam, SAR Hong Kong, China

Abstract

Abstract Assembly of minimal genomes revealed many genes encoding unknown functions. Three overlooked functional categories account for some of them. Cells are prone to make errors and age. As a first key function, discrimination between proper and changed entities is indispensable. Discrimination requires management of information, an authentic, yet abstract, currency of reality. For example proteins age, sometimes very fast. The cell must identify, then get rid of old proteins without destroying young ones. Implementing discrimination in cells leads to the second set of functions, usually ignored. Being abstract, information must nevertheless be embodied into material entities, with unavoidable idiosyncratic properties. This brings about novel unmet needs. Hence, the buildup of cells elicits specific but awkward material implementations, ‘kludges’ that become essential under particular settings, while difficult to identify. Finally, a third functional category characterizes the need for growth, with metabolic implementations allowing the cell to put together the growth of its cytoplasm, membranes, and genome, spanning different spatial dimensions. Solving this metabolic quandary, critical for engineering novel synthetic biology chassis, uncovered an unexpected role for CTP synthetase as the coordinator of nonhomothetic growth. Because a significant number of SynBio constructs aim at creating cell factories we expect that they will be attacked by viruses (it is not by chance that the function of the CRISPR system was identified in industrial settings). Substantiating the role of CTP, natural selection has dealt with this hurdle via synthesis of the antimetabolite 3′-deoxy-3′,4′-didehydro-CTP, recruited for antiviral immunity in all domains of life.

Publisher

Oxford University Press (OUP)

Subject

Agricultural and Biological Sciences (miscellaneous),Biomedical Engineering,Biomaterials,Bioengineering,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3